Packing strong subgraph in digraphs

نویسندگان

چکیده

In this paper, we study two types of strong subgraph packing problems in digraphs, including internally disjoint problem and arc-disjoint problem. These can be viewed as generalizations the famous Steiner tree are closely related to arc decomposition We first prove NP-completeness for restricted symmetric digraphs Eulerian digraphs. Then get inapproximability results Finally digraph compositions obtain some algorithmic by utilizing structural properties.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Packing paths in digraphs

Let G be a xed collection of digraphs. Given a digraph H, a Gpacking of H is a collection of vertex disjoint subgraphs of H, each isomorphic to a member of G. A G-packing, P, is maximum if the number of vertices belonging to some member of P is maximum, over all G-packings. The analogous problem for undirected graphs has been extensively studied in the literature. We concentrate on the cases wh...

متن کامل

Packing arborescences in random digraphs

We study the problem of packing arborescences in the random digraph D(n, p), where each possible arc is included uniformly at random with probability p = p(n). Let λ(D(n, p)) denote the largest integer λ ≥ 0 such that, for all 0 ≤ ` ≤ λ, we have ∑`−1 i=0(`− i)|{v : din(v) = i}| ≤ `. We show that the maximum number of arcdisjoint arborescences in D(n, p) is λ(D(n, p)) a.a.s. We also give tight e...

متن کامل

ON k-STRONG DISTANCE IN STRONG DIGRAPHS

For a nonempty set S of vertices in a strong digraph D, the strong distance d(S) is the minimum size of a strong subdigraph of D containing the vertices of S. If S contains k vertices, then d(S) is referred to as the k-strong distance of S. For an integer k > 2 and a vertex v of a strong digraph D, the k-strong eccentricity sek(v) of v is the maximum k-strong distance d(S) among all sets S of k...

متن کامل

Strong Subgraph $k$-connectivity

Generalized connectivity introduced by Hager (1985) has been studied extensively in undirected graphs and become an established area in undirected graph theory. For connectivity problems, directed graphs can be considered as generalizations of undirected graphs. In this paper, we introduce a natural extension of generalized k-connectivity of undirected graphs to directed graphs (we call it stro...

متن کامل

Minimal strong digraphs

We introduce adequate concepts of expansion of a digraph to obtain a sequential construction of minimal strong digraphs. We obtain a characterization of the class of minimal strong digraphs whose expansion preserves the property of minimality. We prove that every minimal strong digraph of order n > 2 is the expansion of a minimal strong digraph of order n — \ and we give sequentially generative...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Optimization

سال: 2022

ISSN: ['1873-636X', '1572-5286']

DOI: https://doi.org/10.1016/j.disopt.2022.100745